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FOREWORD

This is a supplemental progress report on the research project, "Analysis and Computation

of Internal Flow-Field in a Scramjet Engine," for the period ended August 1991. Certain mod-

ifications were made in the analysis and computational procedures during 1992 after receiving

inputs from the professional communities at national conferences. The manuscript was prepared,

in the final form, during the summer of 1993.

The authors are indebted to Mr. Sutanu Sarkar of the Institute for Computer Applications

in Science and Engineering (ICASE) at NASA Langley Research Center for his cooperation

and technical assistance. Partial funding for this research was provided by the NASA Langley

Research Center through the Grant NAG-I-423. The grant was monitored by Dr. Ajay Kumar

of Theoretical Flow Physics Branch (Fluid Mechanics Division), Mail Stop 156, NASA Langley

Research Center, Hampton, Virginia 23681-0001.



INVESTIGATION OF HIGH-SPEED FREE SHEAR FLOWS USING IMPROVED

PRESSURE-STRAIN CORRELATED REYNOLDS STRESS TURBULENCE MODEL

B. Lakshmanan* and S. N. Tiwari §

Department of Mechanical Engineering and Mechanics

Old Dominion University, Norfolk, VA 23529--0247

ABSTRACT

A high-speed shear layer is studied using compressibility corrected Reynolds stress turbu-

lence model which employs newly developed model for pressure-strain correlation. MacCormack

explicit prediction-corrector method is used for solving the governing equations and the turbu-

lence transport equations. The stiffeness arising due to source terms in the turbulence equations

is handled by a semi-implicit numerical technique. Results obtained using the new model show a

sharper reduction in growth rate with increasing convective Mach number. Some improvements

were also noted in the prediction of the normalized streamwise stress and Reynolds shear stress.

The computed results are in good agreement with the experimental data.
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1. INTRODUCTION

The recent resurging interest in a High Speed Civil Transport (HSCT) and the National

Aerospace Plane (NASP) clearly demonstrates the need for advanced propulsion systems for

supersonic velocities and beyond. Because of the complex nature of the problem, numerous

research programs have been initiated. One aspect of this research has been directed towards

detailed understanding of the complex flowfield in the engine over a wide range of operating

conditions. Computational fluid dynamics (CFD) in conjunction with recent advances in turbu-

lence modeling is used extensively for detailed investigation of the engine flowfield, as existing

wind tunnel facilities are inadequate especially in the high Mach number regime. Because of

the complex nature of the flowfield and increased computational resources necessary, detailed

simulation of the complete engine problem cannot be considered at the present time. A more

tractable problem that can be considered in isolation of the complexities introduced by the engine

geometry is posed by the spatially evolving mixing layer. Currently there is a renewed interest

in compressible mixing layers for two main reasons. First, mixing layers play an important

role in many engineering applications, as they are central to many advanced propulsion systems.

This stems from the fact that they govern the rate of mixing in combustion chambers and are

also responsible for most of the acoustic noise generated by many propulsion systems. Apart

from its practical applications, the compressible shear layer problem has remained as the most

celebrated case for basic testing of transport equation turbulence models.

It is known that variable density extensions of standard incompresible turbulence models

[1,2] are inadequate in duplicating the experimentally observed [3,4] reduction in growth rate

with increasing convective Mach number. This led to attempts by Oh [5], Vandromme [6], and

Dussage and Quine [7], among others to make modifications to incompressible turbulence models

in order to obtain successful prediction of the compressible mixing layer. But these modifica-

tions were developed somewhat on a preliminary fashion and lack the theoretical justifications

necessary to model the physics of the flow adequately when parameters beyond mean growth
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ratesareconsidered.Recently,Sarkaret al. [8,9] recognizedthe importanceof compressible

dissipationandpressure-dilatationwhich are known to be presentin compressibleturbulence.

Simplecorrectionsfor compressibledissipationandpressure-dilatationwere proposedbasedon

direct numericalsimulationof compressibleisotropic turbulencewhich can be easily included

in the existing transportequationturbulencemodels. In addition,Spezialeet al. [10] recently

developeda new model for pressure-straincorrelationwhich wasshownto give improvedpre-

dictions over older modelssuchas the Launder,Reeceand Rodi model [2] when applied to

incompressible,homogeneousturbulent flows.

During the pastdecade,considerableprogresshavebeenmadein the areaof computational

fluid dynamics.Most of the researchactivitieshavebeencenteredaroundcomputingcomplex

three-dimensionalflows over realisticaerodynamicconfigurations.Despitethepopularity of the

existing schemesin computingcomplexflows, their extensionfor solving stiff equationsare

limited in the literature,especiallywithin theframeworkof full Navier-Stokessolvers.

Recently,SarkarandLakshmanan[11]appliedthecompressibilitycorrectedReynoldsstress

turbulencemodel [2] to high speedshearlayer using a full Navier-Stokescode. While the

numericalstudywassuccessful,thecomponentsof theReynoldsstresswereoverpredicted.The

purposeof the study is to incorporatethe newly developedpressure-straincorrelationin the

compressibilitycorrectedReynoldsstressmodel [11]. The resulting turbulencemodel is then

appliedto the caseof high-speedshearlayer over a wide rangeof convectiveMach number.



2. THEORETICAL FORMULATION

In this section, essential governing equations, and boundary and initial conditions are

presented for a compressible supersonic mixing layer evolving downstream of a splitter plate

(Fig. 2.1).

2.1 Governing Equations

The formulation of the problem starts with the Favre-averaged form of the equations

representing conservation of mass, momentum, energy and turbulence quantities. The overbar is

used to denote a conventional Reynolds average, whereas the tilde is used to denote the Favre-

average. For the sake of brevity only the Reynolds stress and dissipation rate transport equations

are given here. Extensive details of the governing equations and models are given in Ref. [11].

Reynolds Stress Equation

Oq -fi .."_..i (_ik_ _jkP ui) -_t(/Suiu_) "q-_Xk [p kUiUj-I-Tijkq- nt- ' _

(_ _'_ I 2 2-..

k ikUj+ __,]1 = Pij -t- I-Iij - 5/} (_s -at- _c) -1- "_P Uk, k t_ij (2.1)DjkUi

(, % -7
- +uj )

where P represents production, II is the pressure-strain correlation and Tijk is the diffusive

transport. The third and fourth term inside the square bracket on the LHS represents the

contribution due to pressure-velocity and stress-velocity correlations respectively. In the present

work these correlations are neglected. The third and fourth terms on the RHS represents the

contribution due to compressible dissipation and pressure-dilatation effects. In the present work,

these terms are computed using the Sarkar's model [8,9]. In Eq. (2.1), the production tensor Pij

is defined in an exact manner while models are carried for the remaining terms.

Production Tensor Pij:

Pij =--/9(uiu-'_k Uj,k nt- u_k u'i,k) (2.2)



Model for Diffusive Transport:

_- __::-
where ¢2 = u_2 + vt2 + w_2 and the model constant Cs = 0.018.

Model for Compressible Dissipation

2727._,
+ (UiUk),j ] (2.3)

f.c =Otl _sM? (2.4)

Model for Pressure-Dilatation:

p"u" - -a2fiPijMt 2 + aafi_',Mt 2k,k --

where Mt = is the turbulent Mach number and gs is the solenoidal dissipation. Based

on direct numerical simulation Sarkar [8,9] recommends al = 0.5, a2 = 0.4 and ot3--0.2.

Model for Pressure-Strain Correlation

Two models are employed in the present study for pressure-strain correlation. The first

model employs the well known Launder, Reece and Rodi model [2] while the second model

employs the recently developed SSG model [9]. The details of the model axe given as follows:

Original Pressure-Strain Correlation Model [2]:

Ilij = -Clp _sbij - C2 ( Pij

where bij is the anisotropy tensor given by

bij --

! t
uiuj 60

(t2 3

In Eq. (2.6), the model constants are C 1 = 3.0 and C2 = 0.6

Pkk3 _ij) (2.5)

(2.6)

Improved Pressure-Strain Correlation Model [9]:

llij = -(C3_s -t- C_P )bij + C4_s (bikbkj - 3bmmbmn,ij)

(1)+ (C5 - C_II1/2)_: Sij - "_SI, k_ij + C6 _: (bikSjk + bjkSil,
(2.7)
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(2.8)

The model constants are

C3 = 3.4

C5 = 0.8

P = -rij "_i,j , II = bijbij (2.9)

, C_=1.8 , C4=4.2

, C_=1.3 , C6=1.25 , C7=0.4

The new models for compressible dissipation, pressure-dilatation and pressure-strain correlation

were chosen because these models have been developed based on direct numerical simulation

of homogeneous isotropic turbulence.

Dissipation Transport Equation

The dissipation transport equation is expressed as

0 (_ _,) + _ P fik_, - C,.--:-- = -C,1--ff p uiuj_ - C,2 p (2.10)[ es ukul Ol J OZj _c

The model coefficients in Eq. (2.10) are

Cd = 1.44 , Ce2= 1.83 , Ce=0.15

For the present problem, we need to solve the Navier-Stokes equations along with the

equations of state, to obtain the mean variables p, u, v and _3. In the case of the plane shear

layer, the Reynolds stress tensor has four nonzero component: u _2, v _2, w _2 and u_v _, which are

solved by the corresponding components of Eq. (2.1). The equation for the solinoidal dissipation

_s completes the set of governing equations. Thus, a system of nine coupled, nonlinear, partial

differential equations along with an appropriate set of initial and boundary conditions must be

solved.
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2.2 Boundary and Initial Conditions

Since the governing equations are elliptic in nature, the boundary conditions have to be

specified along all four boundaries. These include inflow, outflow, and outer boundaries (lower

and upper boundaries), respectively. At the inflow boundary (x = 0.0), profiles are specified for

the velocities, static pressure, static temperature, turbulent stresses, and the turbulent dissipation

rate. Since we are interested in the downstream fully develop regime, the specific form of the

inlet profiles is not crucial.

The outer boundaries always remain in the freestream, and the appropriate boundary condi-

tion is to assume that the normal derivative of the flow variables vanish along those boundaries.

The gradient boundary conditions not only preserve the freestream values along the outer bound-

aries but also provide nonreflective conditions for the outgoing waves. The outflow boundary

(x = x,,_ax) is always supersonic and, hence, the values of mean flow and turbulence quantities

are determined by zeroth-order extrapolation from upstream values. Along with the boundary

conditions, the governing equations also require a set of initial conditions. The initial conditions

at time t = 0 for all of the variables are obtained by simply propagating the inflow profiles

throughout the computational domain. Having specified all of the boundary and initial data,

the equations are marched in time until the residual based on /5_ decreases by six orders of

magnitude, indicating that a converged solution has been obtained.



3. METHOD OF SOLUTION

The transport equations for the mean flow and Reynolds stresses are written in the physical

domain and must be transformed to the computational domain using an appropriate coordinate

transformation. For the physical problem under consideration, an algebraic grid generation

technique is used to generate the mesh. In the physical domain, a uniform grid is used in the

axial direction and in the normal direction the grid lines are clustered near regions where strong

gradients exist. A uniform mesh is used in the computational domain. The governing equations

are first cast into a vector form, where U is the dependent variable vector consisting of nine

components; the vectors F and G, respectively, denote the x and y destruction and redistribution

of the Reynolds stresses. To numerically obtain the solution for the vector U, the governing

equations are then transformed from the physical domain to the computational domain, giving

the following system of equations,

aO ,gP
a---;+ + : (3.1)

where

_J= J U, [-I= J H

= Fy, I - GX,1, G = Gx_ - Fy_, J = x_y, 7 - y_x, 7

In Eq. (3.1), a superscript (_) denotes quantities in the transformed system, (x¢, x,1, Y¢,Y,7) represent

the metrics of the transformation, and J denotes the Jacobian of the transformation. If the physical

grid is given, the metrics and the Jacobian of the transformation can be computed easily.

The governing equations are integrated explicitly in time using the unsplit MacCormack

predictor-corrector scheme [12]. During a specific numerical sweep, the inviscid fluxes and

the first-derivative terms in the source vector H are backward differenced in the predictor step

and forward differenced in the corrector step. Second-order central differences axe used for the

viscous and heat flux terms. Hence, the complete scheme for both the predictor and corrector

steps can be expressed as follows



Predictor:

aCr.,,.+--r V,, 7,S
)

0.". A0.-.-Tr
s,j = t,3 -[- s,3

(3.2a)

(3.2b)

ColTector:

/A A 0
AU."+. 1 = -At _ _'"J ? i,j

',J \ A_ + Arl

_.+1= 1/2 (_n _r-+l A_.n+l'_i,j i,j q- i,j q- ',2 ,/

(3.3a)

(3.3b)

The composite numerical scheme is second-order accurate in both time and space and, being

an explicit scheme, is conditionally restricted by the Courant and viscous stability limits of the

governing equations. The solution procedure requires no scalar or block tridiagonal inversions.

The flow-field is advanced from time level n to n +1 and this process is continued until the

desired integration time or steady state has been reached. Since the Reynolds stress transport

equations contain stiff source terms, the maximum Courant-Ffiedricks-Lewy (CFL) number used

in the computation was limited to 0.5.

The numerical code used in this study is a two-dimensional, Navier-Stokes solver [13] written

in a generalize body-oriented coordinate system. As such, various two-dimensional free shear

flows and wall bounded flows can be handled by the numerical code. The code in its original

form used a second-order spatially and temporally accurate two-step MacCormack scheme. The

later versions of the code employ a variety of higher order compact algorithms [14] (fourth and

sixth order) and various upwind schemes. Local time stepping and residual smoothing options

are also available in the code to accelerate the convergence to steady state. In the present research

work, the capabilities of the code are further enhanced by adding a second-order Reynolds stress

model as a turbulence closure.



9

4. RESULTS AND DISCUSSION

A shear layer developing due to mixing between parallel supersonic streams in chosen as a

test case to validate the newly developed turbulence model. Extensive results have been obtained

over a wide range of convective Mach number. These results serve two purposes. First, the

numerical procedure and the developed computer code are validated by comparing with the

experimental results [4, 15-18]. Secondly, they explain the characteristic behavior of high-speed

shear layers. It should be pointed out that all the results reported in this paper are computed

without artificial dissipation added to the numerical scheme.

Results were obtained for extensive range of convective Mach number by varying the upper

speed U1 from 900 m/sec to 4000 m/sec while maintaining the lower speed U2 at 800 m/sec.

The static conditions for the two incident streams were assumed to be equal. Specifically the

results were obtained for the following conditions:

poo= 101325 N/m 2, Too = 800 K, poo = 0.44 kg/m 3

Computations were carried out for a shear layer (Fig. 2.1) developing over a length of 10

cm. The height of the domain was assumed to be 5 cm. Before discussing the results, a few

definitions are in order. It is well known from the experiments that a fully-developed shear layer

spreads linearly, and that the growth rate d_/dx can be expressed by the following relation:

d, C,5(u__1 -u2) (4.1)dx + u2

where (5(x) denotes the thickness of the shear layer, and C(5 is approximately constant. The

shear layer thickness/f(x) represents the distance between the two cross-stream locations where

the normalized streamwise velocity u* = (u - u2)/(ul - u2) is 0.1 and 0.9 respectively. The

convective Mach number Mc is defined by the following relationship:

Mc : (u'_ - u2 )_-a2 (4.2,

where al and a2 are the speeds of sound in the two layers.
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The calculationswere cardedout using 201x51mesh. A uniformly spacedgrid wasused

in the streamwisedirectionwhile a stretchedgrid wasemployedin the cross-streamdirection.

A grid refinementstudywascardedout in the cross-streamdirection for all convectiveMach

numbersusing101and201points.Grid independentresultswereobtainedbetween101and201

pointsandthevariationin thesolutionbetween51and 101pointswasfoundto be lessthan1%.

Figures4.1 - 4.4 showtheresultsobtainedusingthecompressibilitycorrectedform of the

original model and the improvedmodel for a particular set of conditions of the shear layer

having primary stream velocity ul = 2500m/s.

The velocity and the Reynolds stress profiles were plotted as a function of the similarity

variable rI = (y- yc)/5 where y is the normal coordinate and Yc is the normal coordinate

location where u*=0.5.

Figure 4.1 shows that the mixing layer thickness 5(x) increases linearly after an initial

development phase. It is evident that at the outflow boundary of the computational domain, the

linearly growing regime is well established and the mean velocity profiles have achieved self

similar form. The improved model predicts a slightly reduced mixing layer thickness compared

to the predictions shown by the original model.

Figures 4.2 - 4.4 show the comparison of the fully developed mean velocity and turbulent

stress profiles computed by the two models. These profiles clearly display the asymmetry present

in the flow field as shown by the downward movement of the center of the mixing layer (y

coordinate location where u*=0.5) with axial location (Fig. 4.5). The improved model yields

slightly reduced peak values for the normal stress and Reynolds shear Stress. These results clearly

indicate a greater-penetration of the flow into the low-speed than the corresponding penetration

into the upper high-speed side of the domain.

Figure 4.6 shows the normalized growth rate for a fully developed flow ((C5)o being the

incompressible value which was obtained by calculating case with a small Me) as a function of

convective Mach number. It is seen that without compressibility effects (c_---0.0) both the models

show only a mild decrease in growth rate with increasing convective Mach number. However,
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inclusionof the compressibilitycorrectionto themodels(a=l.0) leadto a sharperreductionin

growth ratewith increasingconvectiveMachnumber.Improvedresultsfor the growth rateare

obtainedusingthecompressibilitycorrectedform of the newmodelascomparedto theoriginal

model especiallyin the high convectiveMach numberregime. Figures4.7 and 4.8 show the

computedpeaknormal stressand ReynoldsshearStressandcomparisonwith theexperimental

data [4, 16-18]. The peak valuesof the normalizedstresscomponentsdecreasesignificantly

with increasingconvectiveMach number. This is thoughtto be a direct consequenceof the

compressibilitycorrection which hasa dissipativeeffect on the growth rate of the turbulent

kinetic energyand shearstress.It is clear that resultsobtainedusing the improvedmodel are

well within the rangeof the experimentaldataunlike thoseof the original model.
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5. CONCLUSIONS

Initially, a second-order turbulence closure (employing Lauder, Reece and Rodi model for

pressure-strain correlation) without any compressibility correction was applied to high-speed

shear layer. The results confirmed that variable density extensions of incompressible turbulence

models were inadequate in duplicating the experimentally reduction in growth rate with increasing

convective Mach number. When compressibility effects were included in the models the results

showed a dramatic reduction in growth rate and peak values of the normalized Reynolds stress

components with increasing convective Mach number. In addition, the results obtained using the

new model for pressure-strain correlation gave improved agreement with the experimental data

for normalized growth rate and peak values of the Reynolds stress components with increasing

convective Mach number.
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Fig. 2.1 Schematic of the compressible shear layer
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Improved model
[10]. 1 With corrections [8,9]
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